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Nonequilibrium Dynamics of Quantum Fields in
Inflationary Cosmology
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We summarize a recent study (with B. L. Hu) of the nonequilibrium dynamics
of an unbroken-symme try inflaton field during postinflationary reheating, during
which the energy density contained in the expectation value of the inflaton field
is rapidly transferred to inhomogeneous quantum modes of the inflaton field.
The coupled dynamics of the expectation value (mean field) of a scalar infla-
ton field with an unbroken global O(N ) symmetry and its quantum variance is
studied using the leading-order, large-N approximation in a spatially flat
Friedmann ±Robertson ±Walker (FRW) background spacetime. The initial
conditions for the mean field, variance, and Hubble parameter were chosen to
be consistent with conditions at the end of slow roll in chaotic inflation.
Backreaction of the dynamics of the mean field on the spacetime is incorporated
self-consistently using the semiclassical Einstein equation. The coupled dynamical
equations for the mean field, variance, and scale factor are solved for various
choices of the mean field amplitude at the end of the slow-roll period, in order
to determine the effect of spacetime curvature on ª preheating,º the parametric
resonance-induced, rapid transfer of energy from the mean field to the
inhomogeneous inflaton modes. It is shown that cosmic expansion can
dramatically effect the efficiency of preheating in the particular model studied.

1. INTRODUCTION

The central unifying component of inflationary universe scenarios [1±6]

is that there is a quantum field, the inflaton field, which contributes a portion
r of the total energy density of the universe for which the equation of state

(for some period of time) is very nearly vacuum-dominated, i.e., the pressure

p satisfies p . 2 r . If the inflaton’ s vacuum energy density dominates over

other forms of energy at some time in (and in some causally coherent patch

of) the early universe, and provided that spatial inhomogeneities are not too
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large [7±9], a period of exponential growth of the cosmological scale factor

a(t) in cosmological (or ª comovingº ) time will ensue.

The exponential growth of the scale factor during a vacuum-dominated
era has important consequences for the thermal history of the universe,

because for quantum fields which are in local thermal equilibrium in the

expanding-universe spacetime, the temperature of such fields decreases in

proportion to 1/a(t). Furthermore, any small spatial inhomogenei ties present

in the energy-momentum tensor prior to the onset of inflation are redshifted

away during inflation, since spatial gradient energy in a quantum field
decreases like 1/a(t)2. During the ª slow-rollº period of inflation, the scale

factor typically must increase by at least a factor of roughly 1030 in order to

solve the large-scale homogeneity and ª unwanted relicsº problems [4].

Therefore, at the end of the slow-roll period, to a very good approxima-

tion, the quantum state of the inflaton field consists of a coherent state which

has a large, spatially homogeneous expectation value f Ã, with fluctuations
about f Ãgiven by an adiabatic vacuum state [1, 4, 5]. The energy density of

the universe is at this point dominated by the energy density of the expectation

value f Ã, with all other fields also being very nearly in an adiabatic vacuum

state. The subsequent dynamics of the mean field f Ã, in which energy is

typically transferred, due to particle production, from f Ãto both light fields
coupled to the inflaton and to the inflaton’ s own inhomogeneous spatial

Fourier modes, is called the reheating period. This period includes the reestab-

lishment of local thermal equilibrium via collisional processes, through which

the postinflationary Universe evolves into the standard radiation-dominated,

big-bang cosmology.

In light of the fact that the mean field f Ãdominates the energy density
of the universe at the end of the slow-roll period, the reheating problem can

be stated as: At what maximal temperature TRH (presumably commensurate

with the redshifted energy density r and the number of effective degrees of

freedom) and on what time scale t RH does the universe reestablish local

thermal equilibrium? Answering this question is important for several reasons.

First, virtually all of the entropy density in the observable universe was
produced during the reheating period [4]. Second, there are several areas

within cosmology which may place bounds on the reheat temperature, thereby

providing constraints for specific inflationary models. In this sense, the reheat

temperature is an important parameter characterizing a specific inflationary

cosmology.

First, the maximal temperature achieved during the reheating period is
important because it is related to the minimum number of e-folds of inflation

necessary to solve the large-scale homogeneity and ª flatnessº problems [4].

The exact nature of the relationship between TRH and the required number

Nmin of e-folds of inflation is model-dependent, but in general such a relation
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will hold. This is because the scale factor is increasing (albeit as a power of

the time t rather than as an exponential) throughout the reheating period.

The reheating temperature is important to baryogenesis. This is because
any baryon asymmetry which may have existed prior to inflation will likely

be diluted away by the large increase in the scale factor during inflation.

Therefore, any baryon asymmetry must be produced either during or after

inflation. A reheating temperature as high as TGUT would make possible GUT

baryogenesis via out-of-equilibrium decay of a supermassive GUT boson

[10]. Furthermore, nonperturbative effects during reheating (during the ª pre-
heatingº stage of the reheating period) may also make possible the generation

of a baryon asymmetry from a nonthermal distribution of GUT bosons pro-

duced during preheating [12±15]. If instead the baryon asymmetry was pro-

duced during nonequilibrium processes during the electroweak phase

transition, the reheating temperature must have been higher than the critical

temperature for the electroweak transition [4].
An understanding of the dynamics of the inflaton during the reheating

period is also potentially important to the production of topological defects.

This is because nonperturbative effects may make possible the nonthermal

restoration of a GUT-scale symmetry during the reheating period, which

could lead to the production of topological defects during the subsequent
cooling and phase transition. This has led some to conclude that inflation

does not necessarily ª solveº the ª unwanted relicsº problem [16, 17] (for

alternative points of view on symmetry restoration, refs. 18 and 19].

Even if nonthermal symmetry restoration during preheating is not a

viable mechanism for generating topological defects [18], an understanding

of the reheating period may still be important to the dark matter problem.
This is because there is both numerical [11, 20±23, 19, 24±28] and analytical

[11, 29, 19, 26, 28] evidence that, in the absence of a symmetry-breaking

potential for the inflaton field, and in the absence of Yukawa-type couplings

of the inflaton to fermion fields, the inflaton eventually ª freezes outº (damping

of the amplitude of inflaton mean-field oscillations due to backreaction from

particle production ceases, and any subsequent damping is due to gravita-
tional redshift only), leaving a spatially homogeneous condensate of matter-

dominated (nonrelativistic) energy density in the inflaton mean field, which

has been conjectured as a possible component of cold dark matter [11].

All of the above-mentioned bridges between the physics of the reheating

period and potential observational constraints on specific inflationary models

depend crucially on the nonequilibrium dynamics of quantum fields during
the reheating period. The inflaton field during inflation is said to be in

disequilibrium because the initial conditions for the inflaton field at the onset

of reheating, with virtually all the energy density concentrated in the zero

mode (which has a large expectation value), constitute a nonthermal spectrum.
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Furthermore , the oscillations of f Ãare more rapid than the particle production

mechanisms which would lead to equilibration of the quantum field. For

cases where the inflaton field has a self-interaction (e.g., chaotic inflation
with a quartic potential), the vacuum state for the inflaton field depends on

the amplitude and dynamics of the time-dependent mean field f Ã[63]. In

addition, it is well known that for a quantum field in a (homogeneous and

isotropic) Friedmann±Robertson±Walker spacetime, the vacuum state

depends on the scale factor. In both cases, even if the background field f Ã

and scale factor a are constant in the asymptotic past and future (conditions
which do not appear to hold for realistic inflationary scenarios), the vacuum

states defined in the asymptotic past, | 0, in & , and in the asymptotic future,

| 0, out & , are physically inequivalent.

As is well known, the Schwinger±DeWitt path integral formulation of

the generating functional Z[J ] for n-point functions yields ª in±outº matrix

elements such as ^ 0, out | F H(x1) | in & , rather than expectation values in terms
of the ª inº vacuum [30±33]. In such cases, the effective action obtained by

the Legendre transform of 2 i log Z[J ] yields equations of motion for the

ª classical fieldº f Ãwhose solutions are neither real nor causally related to J.

For this reason, the Schwinger±DeWitt ª in±outº formulation of quantum

field theory is inconvenient for deriving evolution equations for expectation
values of quantum field operators in the presence of a time-dependent back-

ground (in the present case, the scale factor and the mean field). Furthermore,

when a Cauchy formulation of the coupled dynamics of the spacetime and

matter fields is required, the Schwinger±DeWitt formalism is unsuitable

because it requires a knowledge of the solution for the metric and background

field in the asymptotic future before the asymptotic-future boundary condi-
tions on the functional integral (and thereby, the ª outº vacuum) can be made

well defined.

The Schwinger ±Keldysh ª closed-time-pathº (CTP) formalism provides

an elegant and powerful method of deriving evolution equations for expecta-

tion values for nonequilibrium quantum fields in a dynamical background

[34±41]. One formulates field theory on a spacetime manifold which consists
of two copies of the original spacetime manifold which are identified at some

spacelike hypersurface S
*

which is far to the future of any dynamics in

which one is interested. This identified manifold inherits an orientation from

the original spacetime manifold by reversing the sign of the volume form

between the two copies of the spacetime. In this sense, the two copies of the

spacetime manifold are different ª time branches,º designated 1 and 2 . The
direction of time (i.e., the direction of future-directed timelike vectors) on

the 2 time branch is therefore reversed with respect to the 1 time branch.

The functional integral for quantum fields then consists of a sum over c-

number field configurations which can be independently specified on the 1
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and 2 time branches, subject to the constraint that the configurations agree

on the Cauchy hypersurface S
*
. Similarly, the generating functional for n-

point functions is a functional of a c-number source J which can be indepen-
dently specified on the 1 and 2 time branches, J+ and J 2 . Anti-time-ordered

and time-ordered n-point functions are obtained by n-times differentiating

Z[J+, J 2 ] with respect to J 2 and J+, respectively, and then setting J 6 5 0. It

should be emphasized that the n-point functions obtained by this procedure

are true expectation values with respect to the ª inº quantum state specified by

the boundary conditions on the functional integral. These boundary conditions
need only be specified in the asymptotic past on both time branches, thereby

permitting a well-posed initial value problem for nonequilibrium quantum

fields [39, 40].

Although it has only recently been formulated as a problem involving

nonequilibrium dynamics of quantum fields in curved spacetime, the reheating

problem in inflationary cosmology was first considered over 16 years ago
[42]. Since then, work on the reheating problem, broadly speaking, has

followed two distinct approaches, each developing in two stages.

The first approach to the reheating problem assumed a damped, phenom-

enological equation for the inflaton mean field f Ã,

f È 1 m2 f 1 ( G 1 3H ) f Ç 5 0 (1.1)

where G , given by the imaginary part of the self-energy of the inflaton field

f , is the total perturbative decay rate. The symbol H is the Hubble parameter,

and dots denote differentiation with respect to cosmological or comoving

time. In a first stage of work [42±45], time-dependent perturbation theory

was used to compute the rate of particle production G into light fields (usually
fermions) coupled to the inflaton. Particle production rates were computed

in flat space and assuming an eternally sinusoidally oscillating inflaton mean

field. This neglects the effect of the time-dependent amplitude of the inflaton

mean field on the particle production process. Bose enhancement of particle

production rates into the modes of the inflaton fluctuation field w (and light

Bose fields coupled to the inflaton) was not taken into account.
In the second stage of this first approach to the reheating problem [11,

29, 46, 47], Eq. (1.1) was still utilized to model the mean-field dynamics,

but G was computed beyond first-order in perturbation theory. In the work

of Shtanov et al. [29] and Kofman et al. (KLS) [11], G was computed for a

real self-interacting scalar inflaton field, taking into account the fact that the

mean field appears quadratically in the one-loop mode equations for the
inflaton and other fields coupled to it. Approximate expressions for the growth

rate of occupation numbers were derived, assuming a quasioscillatory mean

field. For bosonic fields coupled to the inflaton, it was found that first-order

time-dependent perturbation theory drastically underestimates the particle



1304 Ramsey

production rate for modes which are in an instability band (due to parametric

resonance). Parametric amplification of quantum fluctuations in bosonic

degrees of freedom can result in rapid out-of-equilibrium transfer of energy
from the inflaton mean field to the inhomogeneous inflaton modes and light

Bose fields coupled to the inflaton. This phenomenon was called preheating
by KLS. It was noted that the preheating effect can, assuming rapid equilibra-

tion, lead to a much larger estimate of the reheating temperature than that

given by the fermions-only, perturbative approach (the so-called ª elementaryº

theory of reheating).
In both stages of this first approach, the backreaction of the inflaton

variance on the mean-field dynamics and of the variance on the quantum mode

functions were not treated self-consistently. Backreaction of the variance on

the quantum modes is important to shutting off the preheating process [19].

The effect of spacetime dynamics was either excluded entirely or not included

self-consistently using the semiclassical Einstein equation. Due to the poten-
tially large initial inflaton amplitude at the onset of reheating, particularly in

the case of chaotic inflation (where the inflaton amplitude at the end of the

slow-roll period can be as large as MP/3, [5]), the effect of cosmic expansion

on quantum particle production needs to be included. Since the mean field

and variance are coupled, the backreaction of particle production on the
mean-field dynamics must be accounted for in a self-consistent manner.

The second approach to the postinflationary reheating problem is built

upon the body of earlier work on cosmological particle creation [48±52].

Following the application of closed-time-path techniques to nonequilibrium

relativistic field theory problems [40, 53], several authors derived perturbative

mean-field equations for a scalar inflaton with various self-couplings and
couplings to fermion fields [54±57]. The closed-time-path method yields a

real and causal mean-field equation with backreaction from quantum particle

creation taken into account. For the case of Bose particle production, perturba-

tion theory in the coupling constant is known to break down for sufficiently

large occupation numbers. It is therefore necessary to employ nonperturbative

techniques in order to study reheating in most inflationary models.
The second stage of work in this second approach to the reheating

problem used nonequilibrium methods to derive self-consistent mean-field

equations for an inflaton coupled to lighter quantum fields [21±23, 58±62].

In the first of these studies [21±23, 58], the coupled one-loop mean-field

and mode-function equations were solved numerically in Minkowski space,

implicitly carrying out an ad hoc nonperturbative resummation in " . In the
one-loop equations, the variances for the inflaton ^ w 2 & and light Bose fields

^ x 2 & do not backreact on the mode functions directly. However, mean-field

equations were derived for an O(N )-invariant linear s model (with a l F 4

self-interaction) at leading order in the large-N approximation by Boyanovsky
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et al. [20]. In this approximation, which includes the two-loop ª double bubbleº

diagram, but not the two-loop ª setting sunº diagram [63], the variance does

backreact on the quantum mode functions. At leading order in the 1/N expan-
sion, the unbroken symmetry dynamical equations for the quartic O(N ) model

are formally similar to the dynamical equations for a single l F 4 field theory

in the time-dependent Hartree±Fock approximation [64]. The nonequilibrium

dynamics of the quartically self-interacting O(N ) field theory in Minkowski

space has been numerically studied at leading order in the 1/N expansion in

both the unbroken symmetry [19, 20, 65] and symmetry-broken [19, 20, 66]
cases. Some analytic work has been done on the self-consistent Hartree±Fock

mean-field equations for a quartic scalar field in Minkowski space [67]. In

addition, the Hartree±Fock equations for a l F 4 field in the slow-roll regime

have been studied numerically in Minkowski space [68] and in FRW space-

time [69]. However, the effect of spacetime dynamics on reheating in the

O(N ) field theory has not (to our knowledge) been studied using the coupled,
self-consistent semiclassical Einstein equation and matter-field dynamical

equations, though some simple analytic work has been done on curvature

effects in reheating [46, 59]. The semiclassical equations for one-loop reheat-

ing in FRW spacetime were derived in ref. 60. The f 2 x 2 theory has been

studied in FRW spacetime by in refs. 70, 61, and 62.
In this paper we summarize a recent study [63, 27] which focuses on

the effect of cosmic expansion on the nonequilibrium dynamics of the inflaton

field during postinflationary reheating, and in particular on the ª preheatingº

mechanism of parametric resonance-induced energy transfer to the inhomoge-

neous inflaton modes. While we assumed a chaotic inflation picture [71]

which avoids many of the technical difficulties (such as infrared divergences)
which can arise in the study of phase transitions in curved spacetime [72±74],

the formalism utilized in our work can also be applied ª newº inflation models

with a symmetry-breaking inflaton potential. A more thorough discussion of

this work, along with an introduction to nonequilibrium quantum field theory

in curved spacetime, can be found in ref. 75.

We follow the sign conventions of Birrell and Davies [33] for the metric
tensor g m n and the Riemann tensor R a b g d . In this convention, the metric

signature is ( 1 , 2 , 2 , 2 ). We use the beginning Latin indices a, b, c, d to

denote closed-time-path ª time pathº indices (with an index set { 1 , 2 }), and

the Latin indices i, j, k, l for the O(N ) space. Greek letters are used to denote

spacetime indices. We work in units where " 5 c 5 kB 5 1.

2. EFFECT OF COSMIC EXPANSION ON PREHEATING

For a study of the effect of cosmic expansion on the parametric

resonance-induced transfer of energy from the inflaton mean field to inhomo-
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geneous quantum modes, it is sufficient to consider only particle production

to the inflaton’ s inhomogeneous quantum modes. Because backreaction of

the inflaton variance on the mean field and inhomogeneous modes is important
during preheating, a nonperturbative truncation of the Schwinger±Dyson

equations is required. In a model with a global O(N ) symmetry, the large-N
expansion at leading order provides such a truncation [65]. At this order, the

only inflaton correlation functions which are dynamical are the mean field

and the variance. As we are interested in the nonequilibrium dynamics of

this model, we specify Cauchy data for the truncated theory, consistent with
the end state of slow roll, at some initial spatial hypersurface S 0.

We start with a classical model consisting of a scalar inflaton field F i with

quartic self-coupling and a global O(N ) symmetry in a classical background

spacetime. The classical action for the theory is

S[ f i, g m n ] 5 SG[g m n ] 1 SF[ f i, g m n ] (2.1)

where the classical gravity action SG is

SG[g m n ]

5
1

16 p G # d4x ! 2 g [R 2 2 L 1 cR2 1 bR a b R a b 1 aR a b g d R a b g d ] (2.2)

and the matter action SM is given by

SF[ f i, g m n ]

5 2
1

2 # M

d4x ! 2 g F -
f ? (M 1 m2 1 j R)

-
f 1

l
4N

(
-

f ?
-

f )2 G (2.3)

Here, g denotes the determinant of the metric tensor g m n , R a b g d is the Riemann

tensor, R a b is the Ricci tensor, R is the scalar curvature, G is Newton’ s

constant, and N is the Laplace±Beltrami operator. The constants2 a, b, and

c have dimensions of length squared, and the cosmological constant L has
dimensions inverse length-squared; all four parameters will be set to zero

after renormalization of the right-hand side of the semiclassical Einstein

equation. The dimensionless bare parameters j and l are the conformal

coupling to gravity and the coupling constant of the O(N ) theory, respectively.

The parameter m is the bare mass of the theory, where m2 is positive, so that

the O(N ) symmetry is unbroken. The inflaton field is quantized on the
classical background spacetime, with an initial quantum state | V & (specified

2 The higher curvature terms must be included in the bare gravitational action in order to
renormalize the divergences which arise in the expectation value of the quantum energy-
momentum tensor ^ T m n & .
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at S 0) which has a nonzero expectation value for the Heisenberg field operator

F i
H,

f Ãi [ ^ V | F i
H | V & (2.4)

for some value of i. The quantum state | V & is defined in terms of the adiabatic

vacuum state (matched in the asymptotic past) for the fluctuations w i
H about

the mean field

w i
H [ F i

H 2 f Ãi (2.5)

In our study, the dynamics of the background spacetime is determined self-

consistently by the semiclassical Einstein equation,

2

! 2 g

d SG

d g m n 5 2 8 p G ^ T m n & ren (2.6)

where the ª renº subscript denotes that divergences on the right-hand side

are understood to be suitably regularized within the context of a covariant
renormalization procedure. The symbol ^ T m n & ren represents the expectation

value of the classical energy-momentum tensor, with the Heisenberg field

operator F i
H replacing the classical field f i. Henceforth, all expectation values

are with respect to the quantum state | V & . The same truncation (namely,

leading-order in the large-N expansion) is applied to the expectation value

of the energy-momentum tensor as to the Schwinger ±Dyson equations for
correlation functions of the quantum field.3

For consistency with the spatial homogeneity and near-spatial flatness

expected at the end of the slow-roll period during inflation (as well as

for simplicity), we assume that the background spacetime is spatially flat

Friedmann±Robertson±Walker (FRW) spacetime. We write the line element
in the form

ds2 5 a( h )2 F d h 2 2 o
3

i 5 1

(dx i)2 G (2.7)

where a is the scale factor and xi (i P {1, 2, 3}) are the physical position

coordinates on the spatial hypersurfaces of constant conformal time h (related
to the cosmic time t by h 5 * dt/a). We shall be specifying initial data on

a spacelike hypersurface of constant h 5 h 0.

The spatial homogeneity and isotropy of FRW spacetime permit only

two algebraically independent components of the energy-momentum tensor,

which in the FRW coordinates of Eq. (2.7) are given by ^ T00 & and ^ Tii & ; all

3 The semiclassical approximation for gravity is consistent with a truncation of the quantum
theory of matter plus gravity perturbations at leading order in the large-N expansion [76, 77].
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other components are zero. These must be functions of h only, due to spatial

homogeneity. For the purpose of numerically solving the semiclassical Ein-

stein equation, it is convenient to work with the trace

7 5 g m n ^ T m n & 5 a 2 2 h m n ^ T m n & (2.8)

instead of ^ Tii & . The trace 7 enters into the dynamical equation for a( h ), and

^ T00 & enters into the constraint equation.

Another consequence of the spatial symmetries of the FRW spacetime

is that the mean field f Ãmust be spatially homogeneous at h 5 h 0, i.e.,

f Ãi( h 0,
-

x ) 5 f Ãi( h 0) (2.9)

Because the Lagrangian is spatially translation and rotation invariant, this

spatial homogeneity is preserved in the full quantum evolution, so that f Ãi is
a function of h only, for all time. Similarly, the various equal-time CTP two-

point functions [63] Gij
ab(x, x8) (for a, b P { 1 , 2 }) are also functions of time

and |
-

x 2
-

x 8 | only,

Gij
ab( h ,

-
x ; h ,

-
x 8) 5 G ij

ab( h , |
-

x 2
-

x 8 | ) (2.10)

In the coincidence limit
-

x 5
-

x 8, the four CTP equal-time two-point functions

are all the same, and equal to the variance of the inflaton field, which for

unbroken symmetry takes the form

^ V | w i
H( h ,

-
x ) w i

H( h ,
-

x ) | V & 5 Gij
ab( h ,

-
x ; h ,

-
x ) (2.11)

We choose initial conditions for the metric which are consistent with a

spacetime which is asymptotically de Sitter at h ® 2 ` , so that for h , h 0,

a( h ) . 1

1 1 H( h )( h 2 h 0)
(2.12)

where the parameter H( h ) is a slowly varying function of time given by

H( h ) [ ! 8 p GTC
00( f Ãi)

3a2( h )
(2.13)

and TC
00( f Ãi) is the 0±0 component of the classical energy-momentum tensor

for the inflaton mean field. With f Ãi( h ) governed (approximately) by the
classical slow-roll equation of motion

( f Ãi)9 1
2a8

a
( f Ãi)8 1 a2 1 m2 1

l
N

f Ãj f Ãk d kj 2 f Ãi 5 0 (2.14)

the metric for h , h 0 describes the slow-roll dynamics of an inflaton field

which has been ª eternally inflatingº (i.e., the spacetime is asymptotically de
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Sitter as h ® 2 ` ). Primes in Eq. (2.14) denote differentiation with respect

to conformal time h .

In taking the large-N limit, for the case of unbroken symmetry, the initial
expectation value f Ãi( h 0) can be in any direction in the O(N ) space; we choose

it to be i 5 0. Because of the O(N ) invariance of the theory, the physics

does not depend on the direction we choose. We can then define

f Ã( h ) [ f Ã0( h ) (2.15)

In taking the large-N limit, we rescale the Planck mass MP by ! N, because

^ T m n & ren , O(N ). In the large-N expansion truncated at leading order, the

equation of motion for f Ã in spatially flat FRW spacetime becomes

f Ã9 1
2a8

a
f Ã8 1 a2 M2( h ) f Ã5 0 (2.16)

where M2( h ) is defined by

M2( h ) [ m2 1
l
2

f Ã2( h ) 1
l
2

^ w 2
H( h ) & (2.17)

and the variance ^ w 2
H( h ) & is spatially translation and rotation invariant, and

given by

^ w i
H( h ,

-
x ) w j

H( h ,
-

x ) & 5 d ij ^ w H( h )2 & (2.18)

The bare variance can be expressed in terms of an integral over spatial

momenta of the modulus squared of the conformal mode functions uÄ k in

which the Heisenberg field operators are expanded [27],

^ w 2
H( h ) & 5

1

a2 # d3k

(2 p )3 | uÄ k( h ) | 2 (2.19)

The complex mode functions uÄ k( h ) obey a harmonic oscillator-type equation

with a time-dependent frequency V k( h ),

uÄ 9k( h ) 1 V 2
k( h )uÄ k( h ) 5 0 (2.20)

where V k( h ) is given by

V k( h )2 [ k2 1 a2 ( h ) F M 2( h ) 1 1 j 2
1

6 2 R( h ) G (2.21)

and R( h ) is the curvature scalar,

R( h ) 5
6a9

a3 (2.22)

The quantum energy-momentum tensor, at leading order in the large-N
approximation, has classical and quantum pieces,
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^ T m n ( F H) & 5 T C
m n ( f Ã) 1 T Q

m n [uÄ k] 2
l
8

^ w 2
H( h ) & 2g m n (2.23)

The third term in the above equation is also quantum in origin, but for

convenience of notation, T Q
m n is defined so as not to include this term [63].

Expressions for the classical piece T C
m n ( f Ã) and T Q

m n [uÄ k] can be found in Eqs.
(3.11) and (3.12) of ref. 27. The energy density r Q of the inhomogeneous

quantum modes of the inflaton field is given by

r Q [
1

a2 T
Q
00 2

l
8

^ w 2
H( h ) & 2 (2.24)

Equation (2.19) for the variance is divergent in three spatial dimensions, and

if one imposes a spatial momentum cutoff K, it is proportional to K 2. Similarly,

the 0±0 component of the quantum part of the energy-momentum tensor is

proportional to K 4, and the trace is proportional to K 2. For quantum fields

in an expanding universe, adiabatic regularization can be used to obtain a

covariantly conserved, finite energy-momentum tensor [52, 78±82]. Adiabatic
regularization is carried out in the context of a renormalization of G, a, b,

c, L , j , l , and m [27]. In place of the bare variance and the bare energy-

momentum tensor which appear in the mode function and semiclassical

Einstein equations, after regularization one has

^ w 2
H( h ) & ren [ ^ w 2

H( h ) & 2 ^ w 2
H( h ) & ad2 (2.25a)

(T Q
m n )ren [ T Q

m n 2 (T Q
m n )ad4 (2.25b)

The quantities without subscripts are the bare expressions for the variance
and quantum energy-momentum tensor, and the quantities with ª ad2º and

ª ad4º subscripts denote second- and fourth-adiabatic order expansions,

respectively, of the variance and quantum energy-momentum tensor, com-

puted using a WKB-type Ansatz for the mode functions [27]. In order to

compute numerically the mode integrals in the renormalized variance and

energy-momentum tensor, an ultraviolet spatial momentum cutoff must be
imposed [65]. In order that the relation between the bare and renormalized

mass is not time dependent, it is necessary that the ultraviolet cutoff K be

imposed in terms of a maximum physical momentum, rather than comoving
momentum [83]. For sufficiently large K, the adiabatically regularized vari-

ance and energy-momentum tensor are cutoff independent [27].

Initial data for the leading-order large-N equations and the semiclassical
Einstein equation consist of f Ã( h 0), f Ã8( h 0), a( h 0), and initial values for uÄ k( h 0)

and uÄ 8k( h 0), for all spatial momenta k. The value a8( h 0) is fixed by the 0±0

component of the semiclassical Einstein equation, which is a constraint. We

choose a( h 0) 5 1, f Ã8( h 0) 5 0, and l f Ã( h 0)
2/4 5 m2. The initial data for the
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modes uÄ k are chosen to coincide with the zeroth-order adiabatic vacuum

(matched at h 5 2 ` ), evolved forward in time to the initial-data hypersurface

h 5 h 0. The adiabatic vacuum is the best approximation to a no-particle
state as would be measured by a comoving detector coupled to the quantum

field [78, 33, 84]. This corresponds to the following choice for initial data

for the modes:

uÄ k( h 0) 5 1 2 p
4H0 2

1/2

H(2)
n ( 2 kH 2 1

0 ) (2.26a)

uÄ 8k( h 0) 5
d

d h F 1 p h
4 2

1/2

H(2)
n (k h ) G | h 5 2 H

2 1
0

(2.26b)

where H0 [ H( h 0), and H (2)
n is the Hankel function of second kind.

The value l 5 10 2 14 was chosen to be representative of typical chaotic
inflation models with a quartic potential, and to avoid inconsistency with the

observed fluctuations in the cosmic microwave background [29]. The minimal

coupling case, j 5 0, was chosen for this study (note, however, ref. 85,

where a nonminimal coupling of the inflaton is considered). Energy units

where m 5 1 were chosen, for simplicity in carrying out the numerical
solution to the dynamical equations. In these units, f Ã( h 0) 5 2.0 3 107. Values

of the momentum cutoff were chosen between K 5 50 and K 5 70 in order

to verify that the results of the numerical calculation are cutoff independent.

The only remaining parameter is the value of the Planck mass in the chosen

energy units, which we varied by choosing different values for the ratio MP/

f Ã( h 0). Values chosen for this ratio were 5 3 106, 5 3 104, 3 3 103, and
300. Roughly one-third this ratio is the initial value of the inverse Hubble

constant; thus, the smaller the ratio MP/ f Ã( h 0), the more rapid is the initial

rate of cosmic expansion. With the value chosen for l and the adiabatic

vacuum initial conditions, the initial value for the contribution of the variance

to the effective mass, l ^ w 2 & /2, is very small, , 10 2 16. As a result of the

oscillations of the inflaton mean field f Ã, parametric resonance will cause
low-k modes of the inflaton field (which are said to be in a ª resonance bandº )

to grow exponentially. Given the values chosen for the parameters f Ã( h 0) and

l , for very slow cosmic expansion, the analytic estimate of ref. 19 gives the

time scale for the quantity l ^ w 2 & /2 to grow to be of order unity; in our model,

this preheatinq time scale, which we denote by t 1, is about 133.

The results of our numerical solution of the coupled dynamical equations
for the metric and inflaton field show that cosmic expansion can dramatically

effect the preheating process when the initial Hubble time scale is less than

or equal to the preheating time scale. We find that when the Hubble time

scale H( h 0)
2 1 . t 1, preheating is an efficient mechanism of energy transfer
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Fig. 1.

from the inflaton mean field to the inhomogeneous modes. For cases of very
slow expansion, H( h 0)

2 1 À t 1, our results agree with simulations of the

leading-order, large-N dynamics of a global O(N ) scalar field theory in

Minkowski space [19], with unbroken symmetry. For the case of rapid expan-

sion, H( h 0)
2 1 & t 1, we find that preheating is not efficient, i.e., the term

l ^ w 2 & /2 is never of order unity. This can be seen from a plot of the quantum
energy density r Q versus conformal time, for the rapid-expansion case of

MP/ f Ã( h 0) 5 300, where H 2 1( h 0) . 104. This plot is shown in Fig. 1.

In Fig. 1 it is clear that the energy density in inhomogeneous quantum

modes of the inflaton field never grows to be of the order of the energy

density of the classical field, which is of order 4 3 1014. This provides clear

evidence that in this model, preheating is not efficient when MP/ f Ã( h 0) & 300.
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